estimating value at risk of portfolio of oil and gold by copula-garch method
نویسندگان
چکیده
copula functions are powerful tools that describe dependence structure of multi- dimension random variables and are considered as one of the newest tools for risk management. one application of copula functions in risk management is calculating value at risk that can assert is the most widely used risk measures in financial institutions. in this article which primary goal is estimating more accurate risk of portfolio, by combining copula functions and garch models we used a method called copula-garch model for calculating var of a portfolio composed of crude oil and gold with data from 2007 to 2012. we will then compare the results with the results of traditional var calculation methods. empirical results indicate that copula-garch method measures portfolio risk more accurately in comparison with traditional methods
منابع مشابه
conditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
Applying GARCH-EVT-Copula Models for Portfolio Value-at-Risk on G7 Currency Markets
This research estimates portfolio VaR (Value-at-Risk) on G7 exchange rates using a GJR-GARCH-EVT (extreme value theory)-Copula based approach. We first extracts the filtered residuals from each return series via an asymmetric GJR-GARCH model, then constructs the semi-parametric empirical marginal cumulative distribution function (CDF) of each asset using a Gaussian kernel estimate for the inter...
متن کاملA Copula-GARCH Model of Conditional Dependencies: Estimating Tehran Market Stock Exchange Value-at-Risk
Modeling the dependency between stock market returns is a difficult task when returns follow a complicated dynamics. It is not easy to specify the multivariate distribution relating two or more return series. In this paper, a methodology based on fitting ARIMA, GARCH and ARMA-GARCH models and copula functions is applied. In such methodology, the dependency parameter can easily be rendered condi...
متن کاملEvaluating Portfolio Value-at-Risk using Semi-Parametric GARCH Models
In this paper we examine the usefulness of multivariate semi-parametric GARCH models for portfolio selection under a Value-at-Risk (VaR) constraint. First, we specify and estimate several alternative multivariate GARCH models for daily returns on the S&P 500 and Nasdaq indexes. Examining the within sample VaRs of a set of given portfolios shows that the semi-parametric model performs uniformly ...
متن کاملThree steps method for portfolio optimization by using Conditional Value at Risk measure
Comprehensive methods must be used for portfolio optimization. For this purpose, financial data of stock companies, inputs and outputs variable, the risk measure and investor’s preferences must be considered. By considering these items, we propose a method for portfolio optimization. In this paper, we used financial data of companies for screening the stock companies. We used Conditional Value ...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
تحقیقات مالیجلد ۱۶، شماره ۲، صفحات ۳۰۹-۳۲۶
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023